NEH/DFG Bilateral
Digital Humanities Program

Tools & Concepts for Safeguarding & Researching
Born-Digital Culture

Award Number: HG-229308-15

Whitepaper

September 22,2017

Project Directors:

Dragan Espenschied (Rhizome) Klaus Rechert (University of Freiburg)
dragan.espenschied@rhizome.org klaus.rechert@rz.uni-freiburg.de

1/16

mailto:dragan.espenschied@rhizome.org
mailto:klaus.rechert@rz.uni-freiburg.de

Introduction

Born-digital works of art are some of society's most at-risk cultural materials. As interactive
software-based art, or online networked art, these works are an important record of our cultural
and aesthetic history as a digital society.

Preservation of these items requires to take their performatic aspects into account, accepting that
born-digital artifacts are not like traditional, “self-contained” archive objects. Instead, they are able
to perform their objecthood when an array of technical elements explicitly outside the artifact
align: in the case of a browser-based artwork, that would be the artifact, a browser, maybe a
series of browser plug-ins, an operating system, networking connections, screens, input devices,
and so forth.

Without productive abstractions, sound object boundary definitions, and workflows available,
memory institutions have not been able to include the performativity of digital objects into their
preservation efforts on a structural level.

This 2 year bilateral project, funded by the NEH in the US and the DFG in Germany, brought
together 3 memory institutions—Yale University Library, the German Literature Archive in
Marbach, the Flusser Archive in Berlin—under the lead of Rhizome in New York and the University
of Freiburg (Germany) to find a remedy this situation.

The goal was to enable complex digital objects to be preserved, exchanged and managed,
published, referenced and reviewed.

The research has been carried out on artworks, with exacting demands on representation and

performance. Yet the presented findings are applicable for any type of digital object. Actionable
findings have been implemented as new workflows and features into the emulation framework
EaaS!'

This document presents the abbreviated findings of the research.

Defining and Maintaining Born-Digital Object Boundaries

The term digital object is used for a wide range of artifacts, ranging from individual files to imaged
media (like a CD-ROM “iso” file) or even full computer systems, including hardware. “Object” is
also used interchangeably with the “content” or “role” of an artifact. For instance, a CD-ROM is not
thought of as the physical disk, but as the things that happen to a computer when the CD-ROM
would be inserted into the drive; a Word document is not about the bitstream, but about the
simulacra of a document that appears on screen when it is loaded into Microsoft Office; and of
course an executable program or app is not about the bitstream, but about its performance.

T See http://emulation.solutions

2/16

http://emulation.solutions/

In order to develop strategies and tools for such a variety of items and roles, it is necessary to
systemize the object’s technical structure, in particular decoupling it conceptually and technically
from a highly specific setup and place it into a documented, controlled and well understood
technical environment, in order to separate concerns about the object’s role from its technical
performance. This can be achieved with a structural decomposition of an object’s runtime
environment. Fig. 1 shows a typical technical stack of an digital object, its major components
and technical interdependencies.

’ . N N ’ . N N , : N N N

. www . Digital artefacts
' R '

* _CD-ROM ,’ ‘_ Website ,” L

‘ Additional software

Operating system

technical interfaces
(OS drivers)

‘ Computer system Hardware environment

PRLRTS S R

Fig. 1 : Structural decomposition of a born-digital object

Software environment

This technical decomposition results in a first set of conceptual and technical layers which allow
to evaluate preservation risk factors and form strategies without considering the specificities of
all layers:

- Digital objects are located on top of the technical stack (the object layer) which
represents the digital object and formulates technical dependencies regarding a software
and hardware environment layer.

- The software environment layer describes a set of installed software applications, drivers
and an operating system, typically available as a virtual disk image, which is usable with
emulated hardware. Effectively, the software environment provides an object’s
performance environment and provides ways for software to connect with the physical
world via hardware. Usually, the dependencies of a software environment include the
hardware architecture (ISA%) and some hardware related capabilities, e.g. network, sound,
etc. as well as external interfaces (e.g. USB, serial port).

2 https://en.wikipedia.org/wiki/Instruction_set_architecture

3/16

https://en.wikipedia.org/wiki/Instruction_set_architecture

- The hardware layer represents physical or emulated hardware components, connecting a
digital object with the physical world.

All hardware will inevitably suffer from physical decay, and for cost reasons can only be preserved
in individual cases, for a limited time. This is also true for emulated hardware: as computer
systems available in the physical world change and diversify, for instance with ARM instead of
Intel becoming the dominant all-purpose computing architecture, the widespread introduction of
new input devices such as touch screens or spatial sensors, and new output devices like
non-rectangular displays, emulators as a whole will inevitably need to adapt.

In contrast, a software environment’s hardware requirements, under preservation care, don't
change over time and can be considered stable. The digital objects performing inside the
environment inherit the environment'’s stability. Hence, longevity of digital objects can only be
ensured if their software environments—the main intermediaries between artifacts and
hardware—are maintained over time, i.e. adapted to newly available (emulated) hardware, putting
new focus on the preservation of environments.

Technical generalization of software environments—a crucial step
to ensure interoperability and longevity

Given the central role of software environments for preservation of performance, a main
requirement for this project was the ability to use real-world disk images with emulation, which
can come from two sources:

- disk images originating from physical hardware, such as the artwork Bomb Iraq by Cory
Arcangel and

- disk images that have been created natively within an emulator, with, for instance, a stock
install of Windows XP.

Conceptually these are equivalent, as both are constructed with dependency on certain
hardware, which might be physically present or emulated.

From today’s perspective, we can safely assume that there will be a future demand for emulators,
e.g. to emulate Intel-based PCs. However, it is impossible to predict their actual technical
characteristics: While all emulators of a given technical platform (like the Intel-based x86
platform) support a common instruction set architecture (ISA), they may differ significantly in their
technical configuration, resulting in environments that performed well on a known emulator
previously to refuse operation. Hence, it is necessary to prepare conceptually and technically for
the event of replacing obsolete emulators with a future generation of emulators.

Within an emulated environment, the operating system (OS) plays an important role, as it typically
provides a hardware abstraction. For instance, any application is able to connect to the internet,
draw pixels on screen and receive mouse coordinates without knowing technical details about the
hardware used. This abstraction is usually achieved through technical interfaces—the so-called

4/16

hardware abstraction layer. This approach is implemented so widely—in Windows, Linux, Mac OS,
Android, etc.—because it greatly simplifies software development and provides compatibility for
software with a wide spectrum of hardware.

The abstraction layer is implemented as hardware drivers. Through the use of OS hardware
abstraction, any software, in our case preserved artifacts, does not depend directly on physical
hardware components but present abstracted hardware dependencies (such as the minimally
required screen resolution, the ability to replay sound, network support, etc.)

In order to find the most effective process, a structured experiment was set up to simulate the
migration of environments from one hardware platform to another, based on the currently
popular emulation and virtualization packages VMWare, VirtualBox and QEMU, covering the Intel
x86 architecture. We installed several popular stock operating system versions of Windows and
Linux on all three emulators, using defaults wherever possible, to create typical VMware /
VirtualBox / QEMU disk images. Next, we tried to run all of these images on the alternative two
emulators.

For brevity, only the work on Windows XP (32bit/SP3) is discussed in greater detail.

T1 T2 T3 1 T2 T3 N T2 T3
From\ To VMWare Virtual Box QEMU
VMware - - + - - +
VirtualBox - + + - - +
QEMU - - + - + +

Table 1: Migrating a Windows XP disk image from one emulator to another
+ indicates success, - indicates failure.

T1: unmodified disk images. The "naive” approach, using unmodified disk images and emulator
defaults, failed for every possible case, usually with “blue screens” caused by mismatched
storage drivers, preventing the start of the OS.

T2: adapting emulator settings. Re-configuring the emulators’” hardware setup to be more
similar to each disk images’ original hardware environment. For all combinations we have
searched relevant knowledge bases and community forums for hints or hacks to get Windows
into a rudimentary safe-mode at least, from which repair mechanisms of the operating system
could be accessed. Even with significant effort, we have succeeded only in two out of six
attempts (cf. Table 1).

5/16

T3: adapting disk images / OS settings. Since the storage controller was preventing system
startup, we evaluated all potential driver configurations for all emulators and were able to select a
minimal, technically basic configuration, which should also be compatible with most of the
real-world setups. This approach worked every time.

In case of Windows XP, a script was implemented to modify the environment's storage controller
configuration by modifying the Windows Registry directly on the disk image.

For most real-word disk images as well as for XP stock installations, changing the storage
controller is only the first step to a fully functional system. Further necessary adaptations can be
done with the help of the operating system itself (e.g. automatic hardware detection and driver
installation). In a final step, customization may be performed to improve usability and/or
execution speed of the environment.

Implementation of a generalization and customization process
that can be monitored, controlled, and guided through peer-review

These aforementioned results highlight the difficulties of importing environments as disk images
from different or unknown hardware configurations, but more importantly they help pointing
towards difficulties future changes in emulator setups may cause for archived disk images. Since
these migration tasks have to be repeated for every environment, automation is essential.
Additionally, the knowledge created about required changes, manifested as meta-data and tools,
will reduce the complexity and cost of future adaptations, especially if one generalized
configuration can be applied to all archived disk images featuring the same operating system.

Based on these insights, an “import + generalization” workflow was implemented. Generic
machine templates are provided, allowing the user to choose from typical legacy computer
systems. These templates describe a systems’ technical configuration, but also include
automated generalization procedures.

A generalization procedure looks out for technical preconditions expected to be present on the
disk image: properties such as volume label, system ID, and sets of files and directories. In the
case of Windows XP, the bootable partition is identified by looking for Windows system
directories. If all preconditions are met, the target partition is made available to the generalization
procedures to carry out the configuration adaption. (Fig. 2 shows the corresponding user
interface.)

6/16

Choose System

WinXP (IDE generic)

System properties

Architecture
x86_64
Emulator
Qemu

Environment Name

WinXP Import
Disk

New Disk

Disk size

1024 MB

Install from Object

© Import Image from URL

Fig. 2: EaaS import image dialog

The first boot of an imported Windows XP image will trigger further automated configuration
processes provided by the operating system, e.g. Windows will detect new hardware and may
require a few boot-cycles until the system is fully adapted to its new technical environment.

Every disk image is exposed read-only to emulators and generalization procedures, with a
separate writeable layer inserted transparently on top. Any changes to the disk image will be
caught in the writable layer while the main disk image is not modified. When a generalization or
emulation session has concluded, the writeable layer can be stored as a new revision of the
original image. After importing, at least three revisions will be generated: 1) the original image
(which bluescreens), 2) the modifications carried out by generalization procedures, and 3) further
adaptations carried out by the operating system'’s repair functions or the user.

Edit Environment
I e A3 R0- T4 M- 4600 5B 1 HATS T 44014
hama

08 ma
Ravisacra:
+ reialed cracks pva 1.0 012 meinlsd IEG — sl up miernel JLAN| - csating mome senices
disablerd indeong and Messenger sensoes - disabisd aino updaies, snabled neiwork ray oo

= iresiaded IE6 -- set up imbemed [LAN,) — deablng more sereces -~ cisabled mdesng and
MESSEnger senioes — deabied aino updates, enabbed retwork tray oo na. |k nEwert

» mal U inbamet (LAMY — deabing more services — disablad ndexing and messenger senices
sk s opdates, Enabksd nEbWOK FaY o - A | t

P GEAGRG MOrs BRrvices. — chia bl Mea g S reisergee SErenes -- Giaablen milG opdales
enahied network trary icon — A | o : this
v okabbd indeosng o MesEin{er seivins - dsabied 300 updaties, snabked miwok nay oo

i k. ¥ ¥
= disabied o wpdates, enabéed nebwork fray ikKon - na
» A 11 7

Fig. 3: EaaS user interface for revision handling

7/16

Each of the revisions can be forked, i.e. new logical branches of revisions can be created. All
branches are represented as individual environments which are based on the same root disk
image and a set of stacked additional layers. Each revision can be annotated to describe the
actions that have been carried out, can be started to be examined in action, and connected with
an artifact. Similar to a version control system, environments can be reverted to any previous
revision if desired.

This workflow can also be used to manually change settings or add software to an environment,
providing a full chain of proof to any modifications made to a given environment, as performatic
provenance.

Tools and Concepts for working with born-digital objects

By defining a boundary between object and software environment, we decouple object from
hardware layer and restrict the technical dependencies to software requirements. The goal is to
identify abstracted dependencies, i.e. dependencies that are not tied to a computer setup, but only
require a certain to be software installed or abstract software interfaces to hardware components
(e.g. GPU or external hardware such USB/serial, etc.). Instead on relying on a mixture of
software- and hardware requirements, an object boundary defined by abstracted dependencies
makes the object rely only on software and software interfaces.

This way objects are usable with multiple, different environments, which increases both their
resilience due to diversified preservation and presentation options.

Based on these observations and requirements we have implemented tools and workflows to
support the object boundaries concept. All workflows have been implemented in a way to
discourage mixing of object and software environment. Instead, we improved the workflows to
create object-environments—tailored software environments derived from general
environments—to publish or present an object with a specific runtime context. The coupling of
artifact and environment is implemented only on a metadata level, where an artifact refers to a
specific environment layer, relying on the emulation framework to bring both components
together on demand.

This way, an artifact can be kept unmodified in its dedicated repository. The framework
implements necessary media conversions to connect an artifact with an emulator. For instance, if
an artifact consists of a set of files and directories, the framework will wrap these files into an
appropriate media type (e.g. CD-ROM or floppy disk image), depending on characteristics of
emulator and software environment.

Extending the Scope of Emulation

In the last project phase, we were able to work on additional use-cases through a collaboration

with TATE Modern in context of the PERICLES EU project, the artist duo Tale of Tales (creators of
an OpenGL 3D computer game), and a collaboration with the University of Amsterdam and LIMA.
These collaborations gave us access to objects with complex system requirements, e.g. artworks

8/16

distributed over multiple machines, specific hardware dependencies (like high-performance
GPUs) or peripherals, such as cameras and sensors. We verified the proposed methodology on
these artworks and tried to identify further technical requirements for improving the EaaS
framework.

An important subset of hardware-related dependencies are externally connected hardware
components. Following the boundaries concept, we focused on the abstracted communication
between an object and external components, especially on protocols and software interfaces
used (i.e. how information is exchanged between software and external hardware). Fortunately,
the amount of types of external technical interfaces is low and built on general purpose standards
(such as USB, serial, parallel etc.)

To connect external hardware components, a physical machine is required. In the case of an
emulated computer system, the host system running the emulator needs to be able to connect
and interact with external hardware components such as human interface devices (e.g. mouse
and keyboard), printers or other peripherals, by using a suitable connector to provide a compatible
connection. The host operating system then needs to provide a software interface for
applications to communicate with external hardware, an emulator (acting as a normal software
application) is then able to use this external hardware. Finally, the emulator needs to provide a
virtual hardware interface connected to the host's software interface, visible to and usable by the
guest environment. Through all these layers, the integrity of data protocols needs to be
maintained.

The artwork The Graveyard (2008) by Tale of Tales?® exists in a version for Linux and controls the
GPU via the cross-platform OpenGL abstraction layer. Linux already supports a translation from
OpenGL calls from inside an emulator to the host system’s OpenGL interface via the simulated
Virgil3D graphics card.* Using this translator, it was possible to run the artwork on an EaaS node
in a cloud setup including a GPU, with a high quality frame rate.

% http://tale-of-tales.com/TheGraveyard/
4 https://virgil3d.github.io/

9/16

http://tale-of-tales.com/TheGraveyard/
https://virgil3d.github.io/

[} 1322304 11/graveyar: X

& - C|®13223041Wgraveyard_sound *| i

Fig. 6: The Graveyard running in an experimental setup
on a GPU-equipped cloud computing service.

In a similar case from TATE's collection, an artwork is based on GPU-accelerated 3D rendering,
this time controlled via the Windows 3D abstraction layer DirectX. It is likely that a suitable
substitute will become available and technically feasible. For another piece created on Windows
that runs distributed on a local network and produces images based on the input of Firewire
cameras, abstracted networking and abstracted camera input (USB instead of Firewire) was
routed into the emulation environment.

None of the identified technical issues (with regard to emulation) are object-specific: network
connections between Windows computers and connecting GPUs or web cameras are generic
problems.

Based on this observation, we extended the EaaS framework to incorporate additional emulation
layers: Infrastructure has been built to “inject” a USB data stream either from a remote machine or
synthetically created by software. Furthermore, we added capabilities to use GPUs within
emulators as well as using GPUs for streaming an emulator’s visual output in high resolution and
high frame rates.

Comparing the behaviour of an original and an emulated version of a software can reveal a
common base-line of abstraction for artifacts within a collection. Any information that goes
beyond this technical foundation might be revealed by more diversified technical probing, or
requires cultural knowledge about the applied systems. This cultural knowledge is not observable
or implicitly present in digital artifacts themselves, but needs to be supplied from other sources.

10/16

For instance, a contemporary emulator produces feedback that can be understood in the moment
it is used—error messages will be shown in a way that integrates within current conventions of
computer usage. The Windows XP running inside the emulator might provide feedback in ways
that are not easily recognizable or understandable at the point in time the re-enactment happens.

Finally, a qualitative evaluation of an object’s performance inside a software environment can not
be based on technical processes alone. The more complex behaviours an object exposes, the
more likely performatic variability might be introduced that changes the perception of the object
or even challenges its objecthood. Only knowledge about the objects themselves can guide an
evaluation process, and might need to rely on documentation of the object managed independent
from the emulation framework. Especially in the case of artworks, curators have to decide if a
presentation via emulation makes sense. This does however not affect the benefits gained from
boundary definition and generalization: even if an object cannot be performed to full satisfaction
at one point in time, as emulators and emulation frameworks are developed further, the
performance can improve in the future. Additionally, introducing technical and conceptual
separations via the suggested processes will be of benefit if any other strategy than emulation is
chosen for re-performance.

Improved Object Citation and Emulation Access

During this project we worked on accessibility, usability and documentation:

The EaaS Desktop has been developed to run EaaS as a local application. There are no specific
hardware/software requirements beside a working Docker installation (see below) which has
become available for all major operating systems.® Via a user-friendly interface, curators are able
to work with objects locally, e.g. prepare software environments, test objects with various
environments, and share or publish the results.

To support sharing, citing or publishing of digital objects, EaaS currently provides multiple options
which we have been simplified and improved in the course of this project:

A JavaScript client has been developed to support either seamless integration of emulation into
an existing Web Uls, or to create individual landing pages e.g. as targets of Handle-URLs or similar
PIDs. Within the client JavaScript library, an instance of a running environment is represented as a
JavaScript object, a RESTful API connects it with the EaaS framework. This way, publishers are
free in adopting the presentation to their needs.

We have also improved the EaaS-Cloud deployment options by simplifying installation and
maintenance as well as broadening the supported Cloud providers. This enabled Rhizome to run
and maintain their own EaaS instance in the Google Cloud and to present multiple artworks to a
global audience (see section “Deployment at Rhizome” for details).

5

http://openpreservation.ora/blog/2017/09/15/getting-started-with-emulation-the-eaas-desktop-application
/

11/16

http://openpreservation.org/blog/2017/09/15/getting-started-with-emulation-the-eaas-desktop-application/
http://openpreservation.org/blog/2017/09/15/getting-started-with-emulation-the-eaas-desktop-application/

An EaaS USB appliance can be used to make an exported environment portable. The improved
version of the EaaS USB appliance is now fully customizable by editing simple configuration files.
A custom Ul to chose from a list of environments stored on the USB drive can be created with
only moderate technical skills using standard HTML, based on the EaaS JavaScript client. Using
the same techniques, it is also possible to set up the appliance to boot into an emulated
environment directly.

Both the interactive and the direct boot options have been used in public exhibitions at Yale
University, Haus der Elektronischen Kunste in Basel, MU in Eindhoven, the Whitechapel Gallery in
London, the Vancouver Art Gallery, and the DCA in Dundee.

One outcome of achieving this milestone is that Rhizome, with additional support from Google,
has established an emulation service on the public Google Compute Cloud, which is planned to be
opened to partnering institutions. Yale University is preparing the deployment of an internal
emulation service.

Deployment at Rhizome and use in artistic programming

In the frame of the project and with financial support from Google, the University of Freiburg and
Rhizome built an Emulation as a Service infrastructure that has been put to regular use when
Rhizome started the online exhibition program Net Art Anthology® in 2016. At time of this report,
16 artworks have been published on Rhizome's web site (see Appendix Table A1 for a complete
list), fully based on the EaaS workflows described above.

The interaction quality of an environment accessed via the web is highly dependent on the
distance of the emulator to the end user, and therefore mirrored in three locations to reach
Rhizome's English speaking audiences in the US, Europe and Australia.

In each region, a base set of four EaaS instances is constantly running to serve a base level of
user demand. Upon the announcement of a new Net Art Anthology piece via social media,
demand is typically spiking, causing the framework to dynamically allocate and manage more
virtual machine instances to run emulators.

The establishment of this public EaaS infrastructure has significantly reduced the required
restoration work that would have gone into an online presentation of legacy net art. In many
cases it was sufficient to reuse a previously prepared environment—for instance one containing
the immensely popular browser Netscape 4.8 with the most dominant plugins installed—and to
point the browser to a web archive or containerized web server to reproduce the work in question.
While the initial customization of such a reusable environment takes some time, any subsequent
application doesn't take more than 5 minutes to set up.

All environments have been created, managed and exported using the EaaS desktop application.

6 See http://anthology.rhizome.org/

12/16

http://anthology.rhizome.org/

Additionally, Rhizome has produced the presentation for an exhibition of The Theresa Duncan
CD-ROMs in Dundee, Scotland, at the DCA, using the exact same environments configurations
that are shown online in a museum exhibition via EaaS USB appliances. Earlier in the project,
prototypical USB appliances have been used in the exhibitions Electronic Superhighway
(Whitechapel Gallery, London), Mashup (Vancouver Art Gallery), MBCBFTW (HeK, Basel and MU,
Eindhoven). The appliance made it possible for Rhizome and independent artists to loan legacy
work for exhibitions in easy-to-deploy, exhibition-ready setups.’

Conceptual object boundaries, knowledge management
and professional roles

A new method to describe dependencies

The research carried out in this project produced productive technical abstractions for the
preservation of performatic digital objects. These abstractions are mirrored in conceptual object
boundaries, the management of preservation knowledge at the level of memory institutions and
domains, and professional roles in the preservation field.

On the outset, the technical definitions of a digital object (or “digital artifact” when regarding the
bitstream storage) have to be equivalent with the forms they are entering institutional care: as
single files or sets of them, storage media like CD-ROMs, or whole computer systems (with the
built-in storage media representing the artifact.) In this context, an object is defined as a
“unique” digital artifact—unique in the sense that it easily distinguishable from “stock”
components like operating systems or standard software tools.

We have determined that the traditional way of describing the dependencies that an object
requires for its performance is not productive, because the the timespan information available
during ingest would remain actionable is typically very short, the information is too vague to be
useful, and ultimately too detailed and not providing meaningful differentiators in between
objects.

For example, a CD-ROM published in 2003, containing software for a Windows operating system,
would typically list requirements like “VGA graphics, SoundBlaster 16, 320 MB hard disk, USB
camera, and 14" color screen”—such components are not available anymore today and describe
rather miniscule technical details that the Windows operating system would actually handle in its
hardware abstraction layer. Additionally, many additional dependencies might be required but not
listed, since they were assumed to be available by default, such as a keyboard and a two-button
mouse. A second object might list slightly different requirements, for instance “Firewire Camera.”
This information might suggest the need for two separate environments supporting different
types of cameras, when in fact any type of camera would have done the job, again due to
hardware abstraction.

7 See D Espenschied, O Stobbe, T Liebetraut, K Rechert (2016): Exhibiting Digital Art via Emulation. In
Proceedings of the 13th International Conference on Digital Preservation (iPres16)

13/16

Therefore, the abstracted dependency of both objects is an operational Windows environment
that is able to interface with a camera, with the technical details being managed at the
environment layer.

This has certain implication for the definition of object boundaries and the management of
objects in collections: technical boundaries, and therefore preservation risks, are becoming
apparent when the digital object is placed in a preservation environment. Errors or wrong
behavior during performance highlight boundaries at which the emulation framework needs to
provide translations or substitutes, such as translating the video signal of a USB-C camera
connected to the host to a USB 1.0 stream in the environment, or providing a transparent IPv6 to
IPv4 converter. However, these are not related to the object, but to the environment. Since legacy
environments do not change anymore, the emulation framework can over time retrospectively
provide all features that any object might ask for.

Hence, the description of technical dependencies and boundaries only make sense at the
environment level, as all objects using a certain environment share this environment'’s
dependencies. Description of abstracted demands (object) and capabilities (environment)—like
networking, sound—can help to match environments with artifacts.

From the perspective of a curator of objects, the emulation framework represents a single layer
that provides usable environments, largely eliminating the need to know about hardware
configurations.

Professional roles

The technical separation described above finds its equivalent a division of labor and roles in
preservation:

- The foundation for the preservation of performatic digital objects is the emulation
framework. It provides a finite set of working base environments, complete with
abstractions for interaction with the outside world, like input and display devices,
networks, and more. The framework handles changes to base and derivative
environments with the goals is to keep each base environment, and in consequence their
derivatives, usable. This requires knowledge about interfaces in between emulator and
host, emulator and client used for access, and existing hardware abstraction already built
into environments. (For instance, the framework might need to provide an on-screen
keyboard when a touchscreen device is used to access an environment; the framework
needs to release generalization procedures to keep environments usable.) The technical
work involved in role is specialized and “expensive,” and is to the benefit of a wide array of
domains: museum restorators, artists, engineers, etc, who are seeking to preserve their
digital materials will base their work on the same base environments.

- Onthe object facing side of an environment, a software curator customizes the base
environments to fit the class of objects they need to re-enact. Based on technical
knowledge specific to their domain, they collect and describe the capabilities of software
tools and other means of customization. For instance, a net art institution would collect

14/16

different networking tools like browsers, an architecture museum would collect CAD
software, an administrative archive would collect versions of office software, and so forth.
The work done in this layer can be beneficial across a whole domain if an environment is
customized for a common use-case, or benefit just a small range of objects.The technical
knowledge required for this role is that of a “power user” or system administrator, without
the need to know anything about hardware.

- The object curator creates combinations of objects and environments for research,
general access, or publication, using matching aids provided by the software curator. The
object curator's knowledge about specific objects allows them to create the right context
for accessible versions and evaluate the quality of performances. The technical
knowledge required for this role is that of a regular user, their work benefits the audience
of a collection.

Conclusion

This project presents new concepts and workflows to bound, generalize and maintain performatic
digital objects, which can be implemented at memory institutions dealing with digital culture.
Research results are manifested in the open source emulation framework EaaS.2 Rhizome has
implemented the framework into the workflows of its artistic program and will soon offer
emulation services to arts institutions. We'd like to hear from you, send us email! The future will
be emulated.

Klaus & Dragan

8 https://github.com/eaas-framework

15/16

https://github.com/eaas-framework

Appendix

Title Creator Year Access URL Notes
. http://archive.rhizome.org/anthology/re-mov Generative art work dependlr?g
re-move.org Lia 1999-2003 e himl on legacy browsers and plugins
: (Shockwave)
Collaborative net art work
skinonskinonskin _|Entropy8Zuper 1999 http://archive.rhizome.org/anthology/skinon |depending on legacy browsers

skinonskin.html

and plugins (DHTML, Flash,
Shockwave, RealAudio)

http://archive.rhizome.org/anthology/world-

Net art work relying on legacy

ia.html

World Of Awe Yael Kanarek 2000
of-awe.html browser
. Jennifer & Kevin http://archive.rhizome.org/anthology/airworl |Net art work relying on
Airworld 1999 Lo
McCoy d.html Quicktime
o http: hive.rhi . hol -di i
Data Diaries Cory Arcangel 2003 t?p //archive.rhizome.org/anthology/data-di Ne? art. work relying on
aries.html Quicktime
http: hive.rhi . hology/heri o .
Heritage Gold Mongrel 1997 th://archive.tizome. org/anthology/heritad Modified version of Photoshop
e-gold.html
Blacklash Mongrel 1998 http://archive.rhizome.org/anthology/blackl Modified action game
ash.html
The Web Stalker {1/0/D 1997 hitp://archive rhizome. ory/anthology/webst Conceptual web browser
alker.html
1/0/D 3 1/0/D 1996 http://archive.rhizome.org/anthology/iod3.ht F.|Ie-system spécmc work
ml circulated on diskette
Bodies© Victoria Vesna 19961999 http://archwe.rh|zome.orq/antholoqv/bodms VRM.L (V|rtu§l Reality) net art
INCorporated inc.html and installation work
)) http://archive.rhizome.org/anthology/thefiler Emulation used .to run Thef
The File Room Antoni Muntadas | 1994-1998 oom.html server (ColdFusion scripting
: language)
http://media.rhizome.org/emulating-bomb-ir Whole system preserv.atlor'L
Bomb Iraq Cory Arcangel 1992, 2005 . migrated to new, multi-region
ag-arcangel/index.html o
emulation infrastructure
Chop Suey 1995))) CD-ROM games, migrated to
http://archive.rhizome.org/theresa-duncan-c o .
Smarty Theresa Duncan 1996 droms/ new, multi-region emulation
70 7610 1997 infrastructure
Epithelia Mariela Yeregui 1999 http://archive.rhizome.org/anthology/epithel |Net art work tied to a specific

Netscape version

Table AT: Artworks publicly presented on the web by Rhizome, using EaaS

16/16

http://archive.rhizome.org/anthology/re-move.html
http://archive.rhizome.org/anthology/re-move.html
http://archive.rhizome.org/anthology/skinonskinonskin.html
http://archive.rhizome.org/anthology/skinonskinonskin.html
http://archive.rhizome.org/anthology/world-of-awe.html
http://archive.rhizome.org/anthology/world-of-awe.html
http://archive.rhizome.org/anthology/airworld.html
http://archive.rhizome.org/anthology/airworld.html
http://archive.rhizome.org/anthology/data-diaries.html
http://archive.rhizome.org/anthology/data-diaries.html
http://archive.rhizome.org/anthology/heritage-gold.html
http://archive.rhizome.org/anthology/heritage-gold.html
http://archive.rhizome.org/anthology/blacklash.html
http://archive.rhizome.org/anthology/blacklash.html
http://archive.rhizome.org/anthology/webstalker.html
http://archive.rhizome.org/anthology/webstalker.html
http://archive.rhizome.org/anthology/iod3.html
http://archive.rhizome.org/anthology/iod3.html
http://archive.rhizome.org/anthology/bodiesinc.html
http://archive.rhizome.org/anthology/bodiesinc.html
http://archive.rhizome.org/anthology/thefileroom.html
http://archive.rhizome.org/anthology/thefileroom.html
http://media.rhizome.org/emulating-bomb-iraq-arcangel/index.html
http://media.rhizome.org/emulating-bomb-iraq-arcangel/index.html
http://archive.rhizome.org/theresa-duncan-cdroms/
http://archive.rhizome.org/theresa-duncan-cdroms/
http://archive.rhizome.org/anthology/epithelia.html
http://archive.rhizome.org/anthology/epithelia.html

